Monoamine oxidase (MAO) inhibitory activity: 3-phenylcoumarins versus 4-hydroxy-3-phenylcoumarins.
نویسندگان
چکیده
Monoamine oxidase (MAO) is a useful target in the treatment of neurodegenerative diseases and depressive disorders. Both isoforms, MAO-A and MAO-B, are known to play critical roles in disease progression, and as such, the identification of novel, potent and selective inhibitors is an important research goal. Here, two series of 3-phenylcoumarin derivatives were synthesized and evaluated against MAO-A and MAO-B. Most of the compounds tested acted preferentially on MAO-B, with IC50 values in the micromolar to nanomolar range. Only 6-chloro-4-hydroxy-3-(2'-hydroxyphenyl)coumarin exhibited activity against the MAO-A isoform, while still retaining good selectivity for MAO-B. 6-Chloro-3-phenylcoumarins unsubstituted at the 4 position were found to be more active as MAO-B inhibitors than the corresponding 4-hydroxylated coumarins. For 4-unsubstituted coumarins, meta and para positions on the 3-phenyl ring seem to be the most favorable for substitution. Molecular docking simulations were used to explain the observed hMAO-B structure-activity relationships for this type of compound. 6-Chloro-3-(3'-methoxyphenyl)coumarin was the most active compound identified (IC50=0.001 μM) and is several times more potent and selective than the reference compound, R-(-)-deprenyl hydrochloride. This compound represents a novel tool for the further investigation of the therapeutic potential of MAO-B inhibitors.
منابع مشابه
Structure-Activity Relationship Analysis of 3-Phenylcoumarin-Based Monoamine Oxidase B Inhibitors
Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson's disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here,...
متن کاملInhibition of monoamine oxidase by stilbenes from Rheum palmatum
Seven stilbenes and one catechin were bioactivity-guidedly isolated from the rhizomes of Rheum palmatem. Their structures were identified as piceatannol(1), resveratrol(2), piceid(3), rhapontigenin(4), piceatannol-3'-O-β-D-glucopyranoside(5), rhaponticin(6), catechin(7) and desoxyrhapontigenin(8). Anti-monoamine oxidase (MAO) activities of compounds 1–8 were tested. Compounds 1 and 8 showed sig...
متن کاملInhibition of monoamine oxidase by stilbenes from Rheum palmatum
Seven stilbenes and one catechin were bioactivity-guidedly isolated from the rhizomes of Rheum palmatem. Their structures were identified as piceatannol(1), resveratrol(2), piceid(3), rhapontigenin(4), piceatannol-3'-O-β-D-glucopyranoside(5), rhaponticin(6), catechin(7) and desoxyrhapontigenin(8). Anti-monoamine oxidase (MAO) activities of compounds 1–8 were tested. Compounds 1 and 8 showed sig...
متن کاملMonoamine Oxidase and Dopamine β-Hydroxylase Inhibitors from the Fruits of Gardenia jasminoides
This research was designed to determine what components of Gardenia jasminoides play a major role in inhibiting the enzymes related antidepressant activity of this plant. In our previous research, the ethyl acetate fraction of G. jasminosides fruits inhibited the activities of both monoamine oxidase-A (MAO-A) and monoamine oxidase-B (MAO-B), and oral administration of the ethanolic extract slig...
متن کامل3-Aryl-1-phenyl-1H-pyrazole derivatives as new multitarget directed ligands for the treatment of Alzheimer's disease, with acetylcholinesterase and monoamine oxidase inhibitory properties
A series of 3-aryl-1-phenyl-1H-pyrazole derivatives was synthesized in good yield and assayed in vitro as inhibitors of the mice acetylcholinesterase (AChE) and two goat liver monoamine oxidase (MAO) isoforms, MAO-A and MAO-B. Most of the compounds demonstrated a good AChE and selective MAO-B inhibitory activities in the nanomolar or low micromolar range. N-((3-(4-chlorophenyl)-1-phenyl-1H-pyra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ChemMedChem
دوره 9 8 شماره
صفحات -
تاریخ انتشار 2014